Using metrology expertise to practise ‘tolerance’

Mechanical engineer Al Spence, PhD

According to the Theory of Inventive Problem Solving – the Russian translation from the acronym TRIZ – a systematic process of creativity forms the foundation for innovative design engineering or product development.

These inventive principles draw on adaptive lateral thinking solutions, with re-usable methodology across industries. In revealing patterns of technical evolution, the theory is also useful for system and failure analysis. And it’s a framework that has guided the problem-solving skills of mechanical engineer Al Spence, PhD, and research lead with Niagara College’s Walker Advanced Manufacturing Innovation Centre (WAMIC).

He describes it more specifically as “abstract” defensive thinking, in which he calculates the consequences of what could go wrong about a particular prototype or system when small manufacturers embark on applied research projects with his research team at the Research & Innovation division.

“I try to sit a little bit in the future … the more you can anticipate the ways not to do something, then the fewer times you will iterate,” he says, adding it’s important to not sink into negative “knee-jerk” and “can’t-do” thinking.

This creative abstract approach also pairs well with research using computer-aided design (CAD) tools – Spence’s mastery. He points out that CAD is particularly helpful in providing a clear visual for the industry partners who work with WAMIC. By offering a CAD rendering – and in many cases, an accompanying moving animation or 3D-printed model – the client is offered a high-fidelity replica of the prototype before it’s mass-produced.

Spence has had extensive experience in perfecting these design concepts. Before his arrival at NC in 2016, he had spent 23 years as a faculty member in the Mechanical Engineering department at McMaster University. With degrees in Applied Mathematics (BMath 1984), and Mechanical Engineering (MASc 1986), both from the University of Waterloo, and a PhD in CAD-based machining simulation from the University of British Columbia (1992), his specialization in metrology, CAD and manufacturing automation has led to work in the spacecraft, manufacturing, energy, textile and medical device industries.

Inside the WAMIC lab, the span of applied research projects he works on today is vast. He has been known to spend late evenings validating the functionality of a novel snow melting solution system, or developing robotic solutions for an aerospace company, or helping to engineer a prototype for a medical device to help the aging population regain mobility.

And while every day is different, and each challenge is new, Spence uses his formal design principles to re-apply solutions in a creative way to other projects.

Al Spence, PhD, with a Coordinate Measure Machine (CMM) at Niagara College’s School of Technology. He’s happily awaiting the arrival of WAMIC’s own state-of-the-art CMM – adding to the lab’s other dimensional metrology equipment.

“You can take a specific problem, pull it back into an abstract way and apply it somewhere else.”

The best parts of his day, he says, are watching the students learn. He also appreciates being able to learn different perspectives from those he mentors, especially given the range of cultures of the student researchers.

“You have to have a curiosity, and not just about technology, but about the people,” he says. “The best thing you can do is sit back and listen to somebody.”

Given his background in the science of measurement, and with an established reputation in Geometric Dimensioning and Tolerancing (GD&T), Spence is happily awaiting the arrival of a highly sophisticated Coordinate Measure Machine (CMM) to the WAMIC lab. This will add to the lab’s other leading-edge dimensional metrology equipment, but makes this the most precise measuring technology on the spectrum, he says.

In terms of accuracy, the new CMM can measure a tenth of the thickness of a human strand of hair. It will be the gold standard, to which other instruments can be calibrated against. However, with such precise machinery, specialized knowledge in operation is key. They are tricky to program and take great know-how to analyze the data. Spence holds these expert skills.

Indeed, with his extensive knowledge in coordinate metrology equipment, Spence is routinely called upon to advise on drawing interpretation and measurement planning for technical services performed by the WAMIC lab for regional companies including Fleet Canada, Airbus Helicopters, and I-Cubed.

Besides his innovative mind, Spence is widely known for his practical and calm approach to projects – and life in general. He explains that in a lab filled with a variety of student and graduate researchers, part of his role is “maintaining the calm.”

As it happens, while a professor at McMaster, he was commonly referred to as “the Peace Man.” This moniker stemmed from his championing the World Peace Flame, a culmination of seven flames lit on five continents and then brought together 20 years ago to ignite one single flame.

These days, it’s not uncommon for Spence to hand out little tea lights that have been lit from the World Peace Flame; it’s his own way of spreading the notion of creating harmony in all human interactions – whether it’s work colleagues, family, friends, or community.

This guiding philosophy can also be traced to his many years as a Freemason, something he calls a family tradition (both his father and grandfather were members). Besides the camaraderie, Spence says the fraternity cultivates a strong sense of “tolerance for one’s neighbour.”

Not surprisingly, he aptly draws the analogy in terms of metrology: “You have to have some tolerance for people … we’re all a little plus or minus, but we are all precious … we mustn’t reject each other.”

READ MORE

Using metrology expertise to practise ‘tolerance’ was last modified: September 2nd, 2021 by cms007ad