With more than 30 years in the small manufacturing arena, Gordon Maretzki, the new Centre Manager at the Walker Advanced Manufacturing Innovation Centre (WAMIC), has had to be multi-disciplined, assuming roles of design engineer, innovator, fabricator, market evaluator, and business owner.
Prior to arriving at Niagara College in 2016 as a WAMIC Researcher and Industry Liaison, Maretzki amassed expertise in areas of engineering design, automation, manufacturing/fabrication and performance testing/validation.
As an entrepreneur, he was involved in product development, in a variety of technologies, while serving in numerous capacities in bringing products to market. It’s fair to say he has established a deep understanding of the sacrifices and challenges that face SMEs (small- and medium-sized enterprises) of today and his desire to support the industry is unmistakable.
Being in the driver’s seat as Centre Manager for the Innovation Centre and its Technology Access Centre (TAC) for Advanced Manufacturing, within the College’s Research & Innovation division, Maretzki is passionate about charting a course that taps into the specific solutions for SMEs that the Centre can offer.
Foremost is clearly illustrating the value that the TAC and Innovation Centre bring – focusing on the real-world solutions for manufacturers, beyond the technology and expertise in house.
“We can provide solutions to challenges and there are funding sources available,” says Maretzki. “Yes, we have state-of-the-art equipment, but the solutions go beyond the 3D printing/scanning and metrology equipment.”
It means reaching out to the manufacturers that share the understanding of how to do business and who know the pain and sacrifices that coexist. Indeed, many of these local companies have survived Niagara’s manufacturing downturn of the 1980s. While historically, the region’s manufacturing sector consisted of large plant facilities, the industrial sector is now primarily comprised of smaller manufacturers and remains one of the largest private-sector economic engines.
Still, even for experienced entrepreneurs, identifying pain points can be tricky. Oftentimes business owners don’t know exactly what they need to solve their challenges. “That’s where we come in,” Maretzki explains. “We can help SMEs view the situation from a different perspective.”
It may not be about deciding on the technical cure, but a higher-level prescription. This could mean having the Innovation Centre team work with a company on quality control, engineering design, or develop creative strategies. In many cases, Maretzki’s research team provides an in-depth overview of what needs to be done and how to get there.
“Not only do we have the capabilities to solve most issues, but we also can provide the essential roadmap of what’s next,” he says, adding that such a framework is often highly valuable for a small company.
“Making machined parts on a CNC mill may be the best method in a particular situation, however there may be surrounding processes that can be improved,” he says. “Maybe it’s looking at a different way of tooling up, or material handling, or part verification. It may not be immediately apparent to SMEs in their day-to-day activities, but we can offer an outside perspective and show them the value in considering surrounding issues.”
The starting point is determining how the technology at the College can enhance an SME’s current process, or getting their product to market quicker. The scan technologies, combined with its modeling and prototyping expertise at the Innovation Centre labs, can be a powerful combination.
This technology can be helpful for companies doing commercial tenant work, for example. “Having a 3D digital field scan of an architectural space gives the designers an as-built model of their current spaces. Designers can use that information when setting up for a new tenant,” says Maretzki. “Knowing that something will fit and not have interference issues on site can be of great value and save many costs at installation time. The same is true for factory moves and fit-ups services that the R&I team has provided others.”
“Not only do we have the capabilities to solve most issues, but we also can provide the essential roadmap of what’s next.”
Perhaps an SME has a legacy part, with no drawings; the item may need changes to it or data to reproduce the part. Bringing that model into digital form and making those changes on the screen, followed by 3D printing it, could save weeks of work for a small manufacturer.
“We can 3D print a prototype, a fixture, new tooling – there are alternative ways that someone might approach making a new product,” he adds.
What’s more, the Centre is also part of a larger network, so managing the solutions while also reaching out as a connector to other expert industry partners to work on a project has frequently been successfully demonstrated.
For entrepreneurs still in the concept stage and who may be passionate about a new idea, Maretzki says they can be directed to the Business & Commercialization team who can help them with market research or feasibility studies for their invention. Such cross-collaboration within the R&I division has proven beneficial for a variety of companies across numerous sectors.
In addition to providing real value for SMEs, a priority within the Innovation Centre is building highly-qualified workers who will bolster both the local and national economy. Maretzki emphasizes the value for students of building relational skills from an industrial point of view. They receive rare access into the inner workings of a manufacturer and get to see first-hand the nuances of how people run their business.
“It is a tremendous opportunity for students to get into many different companies with all the industry partners we work with,” he says. “The astute student can see the various processes and learn about the challenges.”
Maretzki is also known for his candidness with the students he has advised during applied research projects, something he sees as essential for instilling authentic life skills.
“I share everything with them. If we have a challenge with an industry partner’s project, I don’t shield them from it, I say, ‘Okay, how are we going to deal with this the best way possible?’” he explains. “They learn to deal with difficult situations that way… and hopefully they can carry those soft skills with them in the real world.”
He brought this same mentoring philosophy during his time teaching part-time at the College in the Industrial Automation Certification program – a program he developed much of the curriculum for during its start-up.
Maretzki has a Mechanical Engineering degree from the University of Manitoba (1985) and has his Professional Engineering designation (PEng).
His mechanical aptitude also serves him well finding solutions for the many challenges of operating his 47-acre century farm in Beamsville, which he shares with his large family – his wife and eight children.
For more on the array of solutions provided by WAMIC visit the website.